Vectors and Functions

RA Gillmann
The quotient of an n-dimensional vector variable or vector-valued function \mathbf{x} with a scalar variable t equals

$$
\frac{\mathbf{x}}{t}:=\left(\frac{x_{1}}{t}, \frac{x_{2}}{t}, \ldots, \frac{x_{n}}{t}\right) .
$$

The quotient of a scalar variable x with an n-dimensional vector variable or vector-valued function \mathbf{t} equals

$$
\frac{\Delta x}{\Delta \mathbf{t}}:=\left(\frac{x}{t_{1}}, \frac{x}{t_{2}}, \ldots, \frac{x}{t_{n}}\right) .
$$

The quotient of an n-dimensional vector variable or vector-valued function \mathbf{x} with an independent n dimensional vector variable or vector-valued function \mathbf{t} equals

$$
\frac{\mathbf{x}}{\mathbf{t}}:=\left(\frac{\mathbf{x}}{t_{1}}, \frac{\mathbf{x}}{t_{2}}, \ldots, \frac{\mathbf{x}}{t_{n}}\right)=\left(\begin{array}{ccc}
\frac{x_{1}}{t_{1}} & \cdots & \frac{x_{1}}{t_{n}} \\
\vdots & \ddots & \vdots \\
\frac{x_{n}}{t_{1}} & \cdots & \frac{x_{n}}{t_{n}}
\end{array}\right) .
$$

The derivative of an n-dimensional vector function \mathbf{x} with respect to an independent scalar variable t equals

$$
\frac{\mathbf{d x}(t)}{d t}:=\left(\frac{d x_{1}}{d t}, \frac{d x_{2}}{d t}, \ldots, \frac{d x_{n}}{d t}\right) .
$$

The directional derivative of a scalar function x with respect to an independent n-dimensional vector variable \mathbf{t} equals

$$
\frac{d x(\mathbf{t})}{\mathbf{d t}}:=\left(\frac{\partial x}{\partial t_{1}}, \frac{\partial x}{\partial t_{2}}, \ldots, \frac{\partial x}{\partial t_{n}}\right),
$$

The directional derivative of an n-dimensional vector-valued function \mathbf{x} with respect to an n-dimensional vector variable \mathbf{t} equals

$$
\frac{\partial \mathbf{x}(\mathbf{t})}{\partial \mathbf{t}}:=\left(\frac{\partial \mathbf{x}}{\partial t_{1}}, \frac{\partial \mathbf{x}}{\partial t_{2}}, \ldots, \frac{\partial \mathbf{x}}{\partial t_{n}}\right)=\left(\begin{array}{ccc}
\frac{\partial x_{1}}{\partial t_{1}} & \cdots & \frac{\partial x_{1}}{\partial t_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_{n}}{\partial t_{1}} & \cdots & \frac{\partial x_{n}}{\partial t_{n}}
\end{array}\right)
$$

The matrices are square Jacobian matrices, whose $(i, j)^{\text {th }}$ entry is

$$
\mathbf{J}_{i j}=\frac{\partial x_{i}}{\partial t_{j}} \text { or } \frac{\partial t_{i}}{\partial x_{j}} \text {. }
$$

The inverse function theorem states that the matrix inverse of the Jacobian matrix of an invertible function is the Jacobian matrix of the inverse function.

