kinecosm is the six-dimensional world of motion measured by length and duration. position is a reference to a point of the kinecosm, $\mathbb{R}^{3} \times \mathbb{R}^{3}$; an ordered pair of the location and chronation of the same event. motion is a continuous change of a body's position. direction is a position toward which a body moves. dynacosm is the six-dimensional world of weighted motion measured by length with time and mass along with duration with elapsed distance and vass. body is a continuous set of point masses or vasses. length-duration domain is the domain with length and duration independent (time and elapsed distance can be secondary independent variables).
clock-rod is a measuring device with two adjacent rods in relative uniform motion at the elapse rate; marks are at regular intervals on each rod. event (eventicle) is an occurrence; specifically, a point in a frame of reference. event space is length and duration space. frame of reference is a method to project every event onto a coordinate system.

Inertial Frame
length frame is a 3D lattice of clock-rods as an \mathbb{R}^{3} coordinate system with each length rod at rest relative to an observer relative to a duration rod position. length (traversal length) is the interval between two points on a length frame traversed by a point on its duration frame. inertia is the resistance of a body to any change in its state of motion. inertial frame is a length frame in which free particles have no acceleration.

length space is the 3D vector space of a length frame. displacement is a vector between points in length space. location vector is the displacement from the length space origin; symbol \mathbf{x}. distance is the magnitude of a displacement.
elapsed distance is an independent length, e.g., the magnitude of an independent displacement; symbol r. distance domain is elapsed distance and duration space. differential distance $(d r)^{2}=\left(d x_{1}\right)^{2}+\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2}$. arc length is the length along a curve in length space.
punctaneous event occurs in a single elapsed distance point. simuldistant events occur at the same elapsed distance; n simuldistanceity. diatopic events occur through the elapsed distance domain. diatopology is the order of events over elapsed distance.
speed of a body is the elapsed time rate of displacement magnitude, $\Delta x / \Delta t$; instantaneous speed is the magnitude of the instantaneous velocity, $|\mathrm{d} \mathbf{x} / \mathrm{d} t|$; symbol v; units of m / s, etc. harmonic speed is the reciprocal of pace, which adds harmonically.
velocity is the elapsed time rate of displacement, $\Delta \mathbf{x} / \Delta t$; instantaneous velocity is the derivative of the length trajectory with respect to elapsed time, $\mathrm{d} \mathbf{x} / \mathrm{d} t$; symbol \mathbf{v}; from Latin velocitas, rapidity. harmonic velocity is the reciprocal of lenticity, which adds harmonically.
acceleration is the elapsed time rate of velocity variation; verb accelerate; negative is decelerate; zero is unaccelerated; instantaneous acceleration is the derivative of velocity with respect to elapsed time, $\mathrm{d} \mathbf{v} / \mathrm{d} t$; symbol \mathbf{a}; units of $\mathrm{m} / \mathrm{s}^{2}$.

Facilial Frame
duration frame is a 3D lattice of clock-rods as an \mathbb{R}^{3} coordinate system with each duration rod at rest relative to an observer relative to a length rod position. duration (traversal duration) is the interval between two points on a duration frame traversed by a point on its length frame. facilia is the nonresistance of a body to a change in its state of motion; Latin for easy. facilial frame is a duration frame in which free particles have no relentation.
duration space is the 3D vector space of a duration frame. dischronment is a vector between points in duration space. chronation vector is the dischronment from the duration space origin; symbol \mathbf{z} (cf German Zeit). distime is the magnitude of a dischronment.
elapsed time is an independent duration, e.g., the magnitude of an independent dischronment; symbol t. time domain is elapsed time and length space, $\mathbb{R}^{3} \times \mathbb{R}$. differential time $(d t)^{2}=\left(d z_{1}\right)^{2}+\left(d z_{2}\right)^{2}+\left(d z_{3}\right)^{2}$. arc duration is the duration along a curve in duration space.
instantaneous event occurs in a single elapsed time point. simultaneous events occur at the same elapsed time; n simultaneity. diachronic events occur through the elapsed time domain. chronology is the order of events over elapsed time.
pace of a body is the elapsed distance rate of dischronment magnitude, $\Delta z / \Delta r$; punctaneous pace is the magnitude of the instantaneous lenticity, $|\mathrm{d} \mathbf{z} / \mathrm{d} r|$; symbol w; units of s / m; from racing (cf ritmo). harmonic pace is the reciprocal of speed, which adds harmonically.
lenticity is the elapsed distance rate of dischronment, $\Delta \mathbf{z} / \Delta r$; punctaneous lenticity is the derivative of the duration trajectory with respect to elapsed distance, $\mathrm{dz} / \mathrm{d} r$; symbol \mathbf{w}; from Latin lentus, slow. harmonic lenticity is the reciprocal of velocity, which adds harmonically.
relentation is the elapsed distance rate of lenticity variation; verb relentate; negative is derelentate; zero is unrelentated; punctaneous relentation is the derivative of lenticity with respect to elapsed distance, $\mathrm{d} \mathbf{w} / \mathbf{d} r$; symbol \mathbf{b}; units $\mathrm{s} / \mathrm{m}^{2} ; \mathrm{Sp}$.
arithmetic addition is scalar or vector addition; symbol + , for adding rates with a common denominator. equidistant events are an equal distance apart or an equal distance from a common point; vb. equidistancise, to make equidistant.
isodistance (contour) line links equidistant events. length scale (or distance scale) is a ratio of map length $v s$ actual length. synchronic is a wide-angle snapshot.
circular motion: circumference $S=$ wavelength $\lambda=1 / h$ $=v / f$; circular arc s; length radius R; length angle $\theta=$ x / R; frequency $f=1 / \mathrm{T}=v / \lambda$; angular velocity $v=\mathrm{S} / \mathrm{T}=$ λf; if $\mathrm{S}=1$, then $v=f$; if $\mathrm{R}=1$, then $v=\omega=2 \pi f=\theta / t$. phase ϕ is displacement at an initial or elapsed time.
mass is a measure of a body's inertia; the resistance of a body to a change in its condition of motion as a net force is applied; inverse of vass; units of kg ; symbol m. matter is a body with mass and 3D length; a measure of the energy content of a body. point mass (or particle) is a weighted length with elapsed time point.
moment is the product of a physical quantity such as mass or force and its distance from/to a space point/axis. momentum (linear) is the mass times the velocity; the time rate of change of the mass-distance moment; plural, momenta; units in $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$; symbol $\mathbf{p}=m \mathbf{v}$.
force is the agency that tends to change the momentum of a body; elapsed time rate of change of momentum; units in newtons, $\mathrm{N}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$; symbol $\mathbf{F} \equiv \mathrm{d} \mathbf{p} / \mathrm{d} t$.
impulse is a force \mathbf{F} applied over an elapsed time $\mathrm{d} t$, or the change in momentum; units $\mathrm{N} \cdot \mathrm{s}$; symbol $\mathbf{J} \equiv \mathbf{F} \cdot \mathrm{d} t=$ dp. work is a force \mathbf{F} applied over a displacement \mathbf{x} : W $\equiv \mathbf{F} \cdot \mathbf{x}$; constant force: $W=F \mathrm{~d} x=P \mathrm{~d} t$; units: $\mathrm{J}=\mathrm{N} \cdot \mathrm{m}$.
power is the elapsed time rate of work done: $P \equiv \mathrm{~d} W / \mathrm{d} t$ $=\mathbf{F} \cdot \mathbf{v}$; units: Watt, $\mathrm{W}=\mathrm{J} / \mathrm{s}=\mathrm{N} \cdot \mathrm{m} / \mathrm{s}$. energy: the capacity for doing work; units, $\mathrm{J} \equiv \mathrm{N} \cdot \mathrm{m}=\mathrm{W} \cdot \mathrm{s}$; symbol E; energy is conserved over elapsed time. kinetic energy $\mathrm{KE}=1 / 2 m \mathbf{v}^{2}$.
centre of mass (or barycentre) is the normalized moment of mass; $\mathbf{M}=\Sigma_{\mathrm{i}} \mathbf{x}_{\mathrm{i}} m_{\mathrm{i}} / \Sigma_{\mathrm{i}} m_{\mathrm{i}}$. moment of inertia is the second moment of mass; $I \equiv \Sigma_{\mathrm{i}} x_{\mathrm{i}}^{2} m_{\mathrm{i}}$.
gravitation is the mutual force that all bodies have, which is directed toward their mutual centre of mass. weight is the force exerted on a body by gravity.
angular momentum for a length space particle is the moment of momentum, $\mathbf{L} \equiv \mathbf{x} \times \mathbf{p}$, the cross product of the particle's location vector, \mathbf{x}, and its momentum vector, $\mathbf{p}=m \mathbf{v}$. torque is the moment of force; the rate of change of angular momentum, $\boldsymbol{\tau}=\mathrm{I} \boldsymbol{\alpha}=\mathbf{x} \wedge \mathbf{F}$; units: $\mathrm{N} \cdot \mathrm{m}$.
harmonic addition (or reciprocal or parallel addition) is the reciprocal of the addend reciprocals; symbol \boxplus, for adding rates with a common numerator. synchronous events are an equal time apart or an equal time from a common event; vb. synchronise, to make synchronous.
isochron (contour) line links simultaneous events. time scale (or duration scale) is a ratio of map duration vs actual duration. diachronic is a bit of length space through time.
cyclic motion: period $\mathrm{T}=$ wavetime $\mu=1 / \mathrm{f}=w / h$; rotation duration t; duration radius Q ; duration (turn) angle $\psi=z / \mathrm{Q}$; periodicity $h=1 / \mathrm{S}=w / \mu$; angular lenticity $w=\mathrm{T} / \mathrm{S}=\mu h$; if $\mathrm{T}=1$, then $w=h$; if $\mathrm{Q}=1$, then $w=\kappa=2 \pi h=\theta / s$. posture χ is dischronment at an initial or elapsed distance.
vass measures a body's facilia; nonresistance of a body to a change in its condition of motion as a net release is applied; inverse of mass; from inverse mass; units of kg^{-1}; symbol n. patter is a body with vass and 3D duration; a measure of the lethargy content of a body. point vass (or tempicle) is a weighted duration with elapsed distance point.
punctum is the product of a physical quantity such as vass or release and its time from/to a time point. levamentum is the inverse momentum, vass times the lenticity; the distance rate of change of the vass-time punctum; plural, puncta; Latin, point; units of $\mathrm{kg}^{-1} \mathrm{~s} \mathrm{~m}^{-1}$; symbol $\mathbf{q}=n \mathbf{w}$.
release is the agency that tends to change the levamentum of a body; elapsed distance rate of change of levamentum; units in oldtons, $\mathrm{O}=\mathrm{kg}^{-1} \mathrm{~s} \mathrm{~m}^{-2}$; symbol $\mathbf{R} \equiv \mathrm{d} \mathbf{q} / \mathrm{d} s$.
remove is a release \mathbf{G} applied over an elapsed distance $\mathrm{d} x$ or change in levamentum; units $\mathrm{O} \cdot \mathrm{m}$; symbol $\mathbf{K} \equiv \mathbf{R} \cdot \mathrm{d} r=$ dh. repose is a release $\mathbf{R}=\mathbf{F}^{-1}$ applied over a dischronment $\mathbf{z}: Z \equiv \mathbf{R} \cdot \mathbf{z}$; constant release: $Y=R \mathrm{~d} w=Q \mathrm{~d} s$; units $\mathrm{O} \cdot \mathrm{s}$.
placidity is the elapsed distance rate of repose effected: $Q \equiv$ $\mathrm{d} V / \mathrm{d} r=\mathbf{R} \cdot \mathbf{u}$; units: $1 / \mathrm{J} \cdot \mathrm{m}=\mathrm{O} \cdot \mathrm{s} / \mathrm{m}$. lethargy is the capacity for repose; units, $1 / \mathrm{J} \equiv \mathrm{O} \cdot \mathrm{s}$; symbol $D=1 / E$; lethargy is conserved over elapsed distance. kinetic lethargy KL = $1 / 2 n \mathbf{w}^{2}$.
centre of vass (or elaphrocentre) is the normalized punctum of vass; $\mathbf{N}=\Sigma_{\mathrm{i}} \mathbf{z}_{\mathrm{i}} n_{i} / \Sigma_{\mathrm{i}} n_{\mathrm{i}}$. punctum of facilia is the second punctum of vass; $J \equiv \Sigma_{\mathrm{i}} z_{\mathrm{i}}^{2} n_{\mathrm{i}}$.
levitation is the mutual release that all bodies have, which is directed toward their mutual centre of vass. levage is the release exerted on a body by levity (from French).
angular levamentum for a duration space tempicle is the punctum of levamentum, $\boldsymbol{\Gamma} \equiv \mathbf{t} \times \mathbf{h}$, the cross product of the tempicle's chronation vector, \mathbf{z}, and its levamentum vector, $\mathbf{h}=n \mathbf{w}$. strophence is the punctum of release; the rate of change of angular levamentum, $\boldsymbol{\sigma}=\mathrm{I} \boldsymbol{\beta}=\mathbf{z} \wedge \mathbf{R}$; from Greek strophe, turn + (e)nce.

