Parallel Glossary for Classical Physics

RA Gillmann, 2023-12-15

kinecosm is the six-dimensional world of motion measured by length and duration. **position** is a reference to a point of the kinecosm, $\mathbb{R}^3 \times \mathbb{R}^3$; an ordered pair of the location and chronation of the same event. **motion** is a continuous change of a body's position. **direction** is a position toward which a body moves. **dynacosm** is the six-dimensional world of weighted motion measured by length with time and mass along with duration with elapsed distance and vass. **body** is a continuous set of point masses or vasses. **length-duration domain** is the domain with length and duration independent (time and elapsed distance can be secondary independent variables).

clock-rod is a measuring device with two adjacent rods in relative uniform motion at the elapse rate; marks are at regular intervals on each rod. **event** (eventicle) is an occurrence; specifically, a point in a frame of reference. **event space** is length and duration space. **frame of reference** is a method to project every event onto a coordinate system.

Inertial Frame	Facilial Frame
length frame is a 3D lattice of clock-rods as an \mathbb{R}^3 coordinate system with each length rod at rest relative to an observer relative to a duration rod position. length (traversal length) is the interval between two points on a length frame traversed by a point on its duration frame. inertia is the resistance of a body to any change in its state of motion. inertial frame is a length frame in which free particles have no acceleration.	duration frame is a 3D lattice of clock-rods as an \mathbb{R}^3 coordinate system with each duration rod at rest relative to an observer relative to a length rod position. duration (traversal duration) is the interval between two points on a duration frame traversed by a point on its length frame. facilia is the nonresistance of a body to a change in its state of motion; Latin for <i>easy</i> . facilial frame is a duration frame in which free particles have no relentation.
length space is the 3D vector space of a length frame. displacement is a vector between points in length space. location vector is the displacement from the length space origin; symbol x . distance is the magnitude of a displacement.	duration space is the 3D vector space of a duration frame. dischronment is a vector between points in duration space. chronation vector is the dischronment from the duration space origin; symbol z (cf German <i>Zeit</i>). distime is the magnitude of a dischronment.
elapsed distance is an independent length, e.g., the magnitude of an independent displacement; symbol <i>r</i> . distance domain is elapsed distance and duration space. differential distance $(dr)^2 = (dx_1)^2 + (dx_2)^2 + (dx_3)^2$. arc length is the length along a curve in length space.	elapsed time is an independent duration, e.g., the magnitude of an independent dischronment; symbol <i>t</i> . time domain is elapsed time and length space, $\mathbb{R}^3 \times \mathbb{R}$. differential time $(dt)^2 = (dz_1)^2 + (dz_2)^2 + (dz_3)^2$. arc duration is the duration along a curve in duration space.
punctaneous event occurs in a single elapsed distance point. simuldistant events occur at the same elapsed distance; n <i>simuldistanceity</i> . diatopic events occur through the elapsed distance domain. diatopology is the order of events over elapsed distance.	instantaneous event occurs in a single elapsed time point. simultaneous events occur at the same elapsed time; n <i>simultaneity</i> . diachronic events occur through the elapsed time domain. chronology is the order of events over elapsed time.
speed of a body is the elapsed time rate of displacement magnitude, $\Delta x / \Delta t$; <i>instantaneous speed</i> is the magnitude of the instantaneous velocity, $ d\mathbf{x}/dt $; symbol <i>v</i> ; units of m/s, etc. harmonic speed is the reciprocal of pace, which adds harmonically.	pace of a body is the elapsed distance rate of dischronment magnitude, $\Delta z/\Delta r$; <i>punctaneous pace</i> is the magnitude of the instantaneous lenticity, $ dz/dr $; symbol <i>w</i> ; units of s/m; from racing (cf <i>ritmo</i>). harmonic pace is the reciprocal of speed, which adds harmonically.
velocity is the elapsed time rate of displacement, $\Delta \mathbf{x}/\Delta t$; <i>instantaneous velocity</i> is the derivative of the length trajectory with respect to elapsed time, $d\mathbf{x}/dt$; symbol v ; from Latin <i>velocitas</i> , rapidity. harmonic velocity is the reciprocal of lenticity, which adds harmonically.	lenticity is the elapsed distance rate of dischronment, $\Delta \mathbf{z}/\Delta r$; <i>punctaneous lenticity</i> is the derivative of the duration trajectory with respect to elapsed distance, $d\mathbf{z}/dr$; symbol w ; from Latin <i>lentus</i> , slow. harmonic lenticity is the reciprocal of velocity, which adds harmonically.
acceleration is the elapsed time rate of velocity variation; verb <i>accelerate</i> ; negative is <i>decelerate</i> ; zero is <i>unaccelerated</i> ; <i>instantaneous acceleration</i> is the derivative of velocity with respect to elapsed time, $d\mathbf{v}/dt$; symbol a ; units of m/s ² .	relentation is the elapsed distance rate of lenticity variation; verb <i>relentate</i> ; negative is <i>derelentate</i> ; zero is <i>unrelentated</i> ; <i>punctaneous relentation</i> is the derivative of lenticity with respect to elapsed distance, dw/dr; symbol b; units s/m ² ; Sp.

arithmetic addition is scalar or vector addition; symbol +, for adding rates with a common denominator. equidistant events are an equal distance apart or an equal distance from a common point; vb. <i>equidistancise</i> , to make <i>equidistant</i> .	harmonic addition (or reciprocal or parallel addition) is the reciprocal of the addend reciprocals; symbol \boxplus , for adding rates with a common numerator. synchronous events are an equal time apart or an equal time from a common event; vb. <i>synchronise</i> , to make synchronous.
isodistance (contour) line links <i>equidistant</i> events. length scale (or distance scale) is a ratio of map length <i>vs</i> actual length. synchronic is a wide-angle snapshot.	isochron (contour) line links <i>simultaneous</i> events. time scale (or duration scale) is a ratio of map duration <i>vs</i> actual duration. diachronic is a bit of length space through time.
circular motion: circumference S = wavelength $\lambda = 1/h$ = v/f ; circular arc s; length radius R; length angle $\theta = x/R$; frequency $f = 1/T = v/\lambda$; angular velocity $v = S/T = \lambda f$; if S = 1, then $v = f$; if R = 1, then $v = \omega = 2\pi f = \theta/t$. phase ϕ is displacement at an initial or elapsed time.	cyclic motion: period T = wavetime $\mu = 1/f = w/h$; rotation duration <i>t</i> ; duration radius Q; duration (turn) angle $\psi = z/Q$; periodicity $h = 1/S = w/\mu$; angular lenticity $w = T/S = \mu h$; if T = 1, then $w = h$; if Q = 1, then $w = \kappa = 2\pi h = \theta/s$. posture χ is dischronment at an initial or elapsed distance.
 mass is a measure of a body's inertia; the resistance of a body to a change in its condition of motion as a net force is applied; inverse of <i>vass</i>; units of kg; symbol <i>m</i>. matter is a body with mass and 3D length; a measure of the energy content of a body. point mass (or particle) is a weighted length with elapsed time point. 	vass measures a body's facilia; nonresistance of a body to a change in its condition of motion as a net <i>release</i> is applied; inverse of mass; from in <u>v</u> erse m <u>ass</u> ; units of kg ⁻¹ ; symbol <i>n</i> . patter is a body with <i>vass</i> and 3D duration; a measure of the lethargy content of a body. point vass (or tempicle) is a weighted duration with elapsed distance point.
moment is the product of a physical quantity such as mass or force and its distance from/to a space point/axis. momentum (linear) is the <i>mass</i> times the <i>velocity</i> ; the time rate of change of the mass-distance moment; plural, <i>momenta</i> ; units in kg m s ⁻¹ ; symbol $\mathbf{p} = m\mathbf{v}$.	punctum is the product of a physical quantity such as <i>vass</i> or <i>release</i> and its time from/to a time point. levamentum is the inverse momentum, <i>vass</i> times the <i>lenticity</i> ; the distance rate of change of the vass-time punctum; plural, <i>puncta</i> ; Latin, point; units of kg ⁻¹ s m ⁻¹ ; symbol $\mathbf{q} = n\mathbf{w}$.
force is the agency that tends to change the momentum of a body; elapsed time rate of change of <i>momentum</i> ; units in newtons, $N = kg \text{ m s}^{-2}$; symbol $\mathbf{F} \equiv d\mathbf{p}/dt$.	release is the agency that tends to change the levamentum of a body; elapsed distance rate of change of <i>levamentum</i> ; units in <i>oldtons</i> , $O = kg^{-1} s m^{-2}$; symbol $\mathbf{R} \equiv d\mathbf{q}/ds$.
impulse is a force F applied over an elapsed time d <i>t</i> , or the change in momentum; units N·s; symbol $\mathbf{J} \equiv \mathbf{F} \cdot \mathbf{d}t =$ d p . work is a force F applied over a displacement x : <i>W</i> $\equiv \mathbf{F} \cdot \mathbf{x}$; constant force: $W = F \mathbf{d}x = P \mathbf{d}t$; units: $\mathbf{J} = \mathbf{N} \cdot \mathbf{m}$.	remove is a <i>release</i> G applied over an elapsed distance dx or change in <i>levamentum</i> ; units O·m; symbol $\mathbf{K} \equiv \mathbf{R} \cdot dr = d\mathbf{h}$. repose is a release $\mathbf{R} = \mathbf{F}^{-1}$ applied over a <i>dischronment</i> z : $Z \equiv \mathbf{R} \cdot \mathbf{z}$; constant <i>release</i> : $Y = R dw = Q ds$; units O·s.
power is the elapsed time rate of work done: $P \equiv dW/dt$ = F · v ; units: Watt, W = J/s = N·m/s. energy : the capacity for doing work; units, J \equiv N·m = W·s; symbol <i>E</i> ; energy is conserved over elapsed time. kinetic energy KE = $\frac{1}{2}mv^2$.	placidity is the elapsed distance rate of repose effected: $Q \equiv dV/dr = \mathbf{R} \cdot \mathbf{u}$; units: $1/\mathbf{J} \cdot \mathbf{m} = \mathbf{O} \cdot \mathbf{s}/\mathbf{m}$. lethargy is the capacity for repose; units, $1/\mathbf{J} \equiv \mathbf{O} \cdot \mathbf{s}$; symbol $D = 1/E$; lethargy is conserved over elapsed distance. kinetic lethargy KL = $\frac{1}{2}n\mathbf{w}^2$.
centre of mass (or <i>barycentre</i>) is the normalized moment of mass; $\mathbf{M} = \sum_{i} \mathbf{x}_{i} m_{i} / \sum_{i} m_{i}$. moment of inertia is the second moment of mass; $I \equiv \sum_{i} x_{i}^{2} m_{i}$.	centre of vass (or <i>elaphrocentre</i>) is the normalized punctum of vass; $\mathbf{N} = \sum_{i} \mathbf{z}_{i} n_{i}/\sum_{i} n_{i}$. punctum of facilia is the second punctum of vass; $J \equiv \sum_{i} z_{i}^{2} n_{i}$.
gravitation is the mutual force that all bodies have, which is directed toward their mutual centre of mass. weight is the force exerted on a body by gravity.	levitation is the mutual <i>release</i> that all bodies have, which is directed toward their mutual centre of <i>vass</i> . levage is the <i>release</i> exerted on a body by <i>levity</i> (from French).
angular momentum for a length space particle is the moment of momentum, $\mathbf{L} \equiv \mathbf{x} \times \mathbf{p}$, the cross product of the particle's location vector, \mathbf{x} , and its momentum vector, $\mathbf{p} = m\mathbf{v}$. torque is the moment of force; the rate of change of angular momentum, $\mathbf{\tau} = \mathbf{I}\boldsymbol{\alpha} = \mathbf{x} \wedge \mathbf{F}$; units: N·m.	angular levamentum for a duration space tempicle is the punctum of levamentum, $\Gamma \equiv \mathbf{t} \times \mathbf{h}$, the cross product of the tempicle's <i>chronation</i> vector, \mathbf{z} , and its <i>levamentum</i> vector, $\mathbf{h} = n\mathbf{w}$. strophence is the punctum of release; the rate of change of angular <i>levamentum</i> , $\mathbf{\sigma} = \mathbf{I}\mathbf{\beta} = \mathbf{z} \wedge \mathbf{R}$; from Greek <i>strophe</i> , turn + (e) <i>nce</i> .