Parallel Equations of Motion				
RA Gillmann, 2023-04-07	Displacement & Time	Dischronment & Stance	Angle & Arc Length	Angle & Arc Duration
Stance / Distance Time / Distime	Displacement: x ; distance <i>x</i> Independent time: <i>t</i>	Dischronment: z ; distime <i>z</i> Independent stance: <i>s</i>	Angle length: $\theta = s/r$ Arc length: s	Angle duration: $\mathbf{\varphi} = \mathbf{t}/q$ Arc duration: <i>t</i>
Radius Period	Length radius $r = S/(2\pi) = qv$	Duration radius $q = T/(2\pi) = rw$	Angular velocity $\boldsymbol{\omega} = \boldsymbol{\varphi}/t = \boldsymbol{\kappa}/\boldsymbol{w} = 2\pi f = 2\pi/T$ $= d\boldsymbol{\theta}/dt = \mathbf{v}_{\perp}/r = 1/q$	Wavenumber (angular lenticity) $ \mathbf{\kappa} = \mathbf{\theta}/s = \mathbf{\omega}/v = 2\pi h = 2\pi/\lambda $ $ = d\mathbf{\theta}/ds = \mathbf{w}_{\perp}/q = 1/r $
Velocity Lenticity Wavenumber	Cross/Tangential velocity $\mathbf{v}_{\perp} = \mathbf{d}\mathbf{x}/\mathbf{d}t = \mathbf{r} \times \boldsymbol{\omega} = r/q = S/T$	Cross/Tangential lenticity $\mathbf{u}_{\perp} = \mathbf{d}\mathbf{z}/\mathbf{d}s = \mathbf{q} \times \mathbf{\kappa} = q/r = T/S$		
Acceleration Relentation	Radial acceleration $a_{\parallel} = v^2/r = r\omega^2 = v/q = r/q^2$	Radial relentation $b_{\parallel} = w^2/q = q\kappa^2 = w/r = q/r^2$	Angular acceleration $\boldsymbol{\alpha} = d\boldsymbol{\omega}/dt = \mathbf{a}T/r$	Angular relentation $\boldsymbol{\beta} = \mathbf{d} \boldsymbol{\kappa} / \mathbf{d} s = \mathbf{b} \mathbf{T} / q$
	Tangential acceleration $\mathbf{a}_{\perp} = \mathbf{\omega} \times \mathbf{v} = \mathrm{Td}\mathbf{v}/\mathrm{d}t = r\mathbf{\alpha}$	Tangential relentation $\mathbf{b}_{\perp} = \mathrm{Td}\mathbf{w}/\mathrm{d}s = q\mathbf{\beta}$		
Wavelength Period	$\lambda = \mathbf{S} = 2\pi r = 2\pi v q$	$\mathbf{T} = 2\pi q = 2\pi w r$	$\lambda = S = 2\pi/\kappa = 1/h$	$T = 2\pi/\omega = 1/f$
Revolutions Repetitions Frequency Circuncy	Revolutions $N = \theta/(2\pi)$	Repetitions $Z = \varphi/(2\pi)$	Period frequency $f = \omega/(2\pi) = 1/T$	Length frequency (circuncy) $h = \kappa/(2\pi) = 1/\lambda$
Constant Velocity Lenticity	$\mathbf{x} = \mathbf{x}_0 + \mathbf{v}t$	$\mathbf{z} = \mathbf{z}_0 + \mathbf{w}s$	$\mathbf{\theta} = \mathbf{\theta}_0 + \mathbf{\omega} t$	$\boldsymbol{\varphi} = \boldsymbol{\varphi}_0 + \boldsymbol{\kappa}s$
First Equation of Motion	$\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t$	$\mathbf{w} = \mathbf{w}_0 + \mathbf{b}s$	$\boldsymbol{\omega} = \boldsymbol{\omega}_0 + \boldsymbol{\alpha} t$	$\kappa = \kappa_0 + \beta s$
Second Equation of Motion	$\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2$	$\mathbf{z} = \mathbf{z}_0 + \mathbf{w}_0 x + \frac{1}{2} \mathbf{b} s^2$	$\mathbf{\theta} = \mathbf{\theta}_0 + \mathbf{\omega}_0 t + \frac{1}{2} \mathbf{\alpha} t^2$	$\boldsymbol{\varphi} = \boldsymbol{\varphi}_0 + \boldsymbol{\kappa}_0 t + \frac{1}{2} \boldsymbol{\beta} s^2$
Third Equation of Motion	$\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a} \cdot (\mathbf{x} - \mathbf{x}_0)$	$\mathbf{w}^2 = \mathbf{w}_0^2 + 2\mathbf{b} \cdot (\mathbf{z} - \mathbf{z}_0)$	$\boldsymbol{\omega}^{2} = \boldsymbol{\omega}_{0}^{2} + 2\boldsymbol{\alpha} \cdot (\boldsymbol{\theta} - \boldsymbol{\theta}_{0})$	$\kappa^2 = \kappa_0^2 + 2\beta \cdot (\phi - \phi_0)$
Inertia Facilia	Mass, linear inertia: $m = 1/n$	Vass, linear facilia: $n = 1/m$	Angular inertia: $I = mr^2$	Angular facilia: $J = nq^2$
Momentum Levamentum	Momentum: $\mathbf{p} = m\mathbf{v}$	Levamentum: $\mathbf{q} = n\mathbf{w}$	Angular momentum: $\mathbf{L} = \mathbf{I}\boldsymbol{\omega}$	Angular levamentum: $\Gamma = J\kappa$
Kinetic Energy and Lethargy	Kinetic energy: $E_K = \frac{1}{2}mv^2$	Kinetic lethargy: $L_{\rm K} = \frac{1}{2}nw^2$	Angular energy $E_A = \frac{1}{2}I\omega^2$	Angular lethargy $L_A = \frac{1}{2}J\kappa^2$
Newton's Second Law	Force: $\mathbf{F} = m\mathbf{a} = d\mathbf{p}/dt$	Release: $\mathbf{R} = n\mathbf{b} = d\mathbf{q}/ds$	Torque: $\mathbf{\tau} = \mathbf{I}\boldsymbol{\alpha} = \mathbf{s} \times \mathbf{F}$	Strophence: $\boldsymbol{\sigma} = J\boldsymbol{\beta} = \mathbf{t} \times \mathbf{R}$
Work Repose	Linear work: $W = \mathbf{F} \cdot \mathbf{x}$	Linear repose: $Y = \mathbf{R} \cdot \mathbf{z}$	Angular work: $W = \mathbf{\tau} \cdot \mathbf{\theta}$	Angular repose: $Y = \boldsymbol{\sigma} \cdot \boldsymbol{\phi}$
Power Placidity	Linear power: $P = \mathbf{F} \cdot \mathbf{v}$	Linear placidity: $Z = \mathbf{R} \cdot \mathbf{w}$	Angular power: $P = \mathbf{\tau} \cdot \boldsymbol{\omega}$	Angular placidity: $Z = \boldsymbol{\sigma} \cdot \boldsymbol{\kappa}$