Parallel Equations of Motion						
RA Gillmann, 2023-04-07	Displacement \& Time	Dischronment \& Stance	Angle \& Arc Length	Angle \& Arc Duration		
Stance / Distance \| Time / Distime	Displacement: \mathbf{x}; distance x Independent time: t	Dischronment: \mathbf{z}; distime z Independent stance: s	Angle length: $\boldsymbol{\theta}=\mathbf{s} / r$ Arc length: s	Angle duration: $\boldsymbol{\varphi}=\mathbf{t} / q$ Arc duration: t		
Radius \| Period	Length radius $r=\mathrm{S} /(2 \pi)=q v$	Duration radius $q=\mathrm{T} /(2 \pi)=r w$	Angular velocity$\begin{aligned} \boldsymbol{\omega}= & \boldsymbol{\varphi} / t=\boldsymbol{\kappa} / w=2 \pi f=2 \pi / \mathrm{T} \\ & =\mathrm{d} \boldsymbol{\theta} / \mathrm{d} t=\mathbf{v}_{\perp} / r=1 / q \end{aligned}$	Wavenumber (angular lenticity)$\begin{aligned} \boldsymbol{\kappa} & =\boldsymbol{\theta} / s=\boldsymbol{\omega} / v=2 \pi h=2 \pi / \lambda \\ & =\mathrm{d} \boldsymbol{\theta} / \mathrm{d} s=\mathbf{w}_{\perp} / q=1 / r \end{aligned}$		
Velocity \| Lenticity	Wavenumber	Cross/Tangential velocity $\mathbf{v}_{\perp}=\mathrm{d} \mathbf{x} / \mathrm{d} t=\mathbf{r} \times \boldsymbol{\omega}=r / q=\mathrm{S} / \mathrm{T}$	Cross/Tangential lenticity $\mathbf{u}_{\perp}=\mathrm{d} \mathbf{z} / \mathrm{d} s=\mathbf{q} \times \boldsymbol{\kappa}=q / r=\mathrm{T} / \mathrm{S}$			
Acceleration \| Relentation	Radial acceleration $a_{\\|}=v^{2} / r=r \omega^{2}=v / q=r / q^{2}$	Radial relentation $b_{\\|}=w^{2} / q=q \kappa^{2}=w / r=q / r^{2}$	Angular acceleration$\boldsymbol{\alpha}=\mathrm{d} \boldsymbol{\omega} / \mathrm{d} t=\mathbf{a} \mathrm{T} / r$	Angular relentation$\boldsymbol{\beta}=\mathrm{d} \boldsymbol{\kappa} / \mathrm{d} s=\mathbf{b T} / q$		
	Tangential acceleration $\mathbf{a}_{\perp}=\boldsymbol{\omega} \times \mathbf{v}=\mathrm{Td} \mathbf{v} / \mathrm{d} t=r \boldsymbol{\alpha}$	Tangential relentation $\mathbf{b}_{\perp}=\mathrm{T} \mathbf{d} \mathbf{w} / \mathrm{d} s=q \boldsymbol{\beta}$				
Wavelength \| Period	$\lambda=\mathrm{S}=2 \pi r=2 \pi v q$	$\mathrm{T}=2 \pi q=2 \pi w r$	$\lambda=\mathrm{S}=2 \pi / \kappa=1 / h$	$\mathrm{T}=2 \pi / \omega=1 / f$		
Revolutions \| Repetitions Frequency	Circuncy	Revolutions $\mathrm{N}=\theta /(2 \pi)$	Repetitions $\mathrm{Z}=\varphi /(2 \pi)$	Period frequency $f=\omega /(2 \pi)=1 / T$	Length frequency (circuncy) $h=\kappa /(2 \pi)=1 / \lambda$	
Constant Velocity \| Lenticity	$\mathbf{x}=\mathbf{x}_{0}+\mathbf{v} t$	$\mathbf{z}=\mathbf{z}_{0}+\mathbf{w} s$	$\boldsymbol{\theta}=\boldsymbol{\theta}_{0}+\boldsymbol{\omega} t$	$\varphi=\varphi_{0}+\boldsymbol{\kappa} s$		
First Equation of Motion	$\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$	$\mathbf{w}=\mathbf{w}_{0}+\mathbf{b} s$	$\boldsymbol{\omega}=\boldsymbol{\omega}_{0}+\boldsymbol{\alpha} t$	$\boldsymbol{\kappa}=\kappa_{0}+\boldsymbol{\beta} s$		
Second Equation of Motion	$\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a}^{2}$	$\mathbf{z}=\mathbf{z}_{0}+\mathbf{w}_{0} x+1 / 2 \mathbf{b} s^{2}$	$\boldsymbol{\theta}=\boldsymbol{\theta}_{0}+\boldsymbol{\omega}_{0} t+1 / 2 \boldsymbol{\alpha} t^{2}$	$\boldsymbol{\varphi}=\boldsymbol{\varphi}_{0}+\boldsymbol{\kappa}_{0} t+1 / 2 \boldsymbol{\beta} s^{2}$		
Third Equation of Motion	$\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}+2 \mathbf{a} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)$	$\mathbf{w}^{\mathbf{2}}=\mathbf{w}_{0}{ }^{2}+2 \mathbf{b} \cdot\left(\mathbf{z}-\mathbf{z}_{0}\right)$	$\boldsymbol{\omega}^{2}=\boldsymbol{\omega}_{0}{ }^{2}+2 \boldsymbol{\omega} \cdot\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)$	$\boldsymbol{\kappa}^{2}=\boldsymbol{\kappa}_{0}{ }^{2}+2 \boldsymbol{\beta} \cdot\left(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{0}\right)$		
Inertia \| Facilia	Mass, linear inertia: $m=1 / n$	Vass, linear facilia: $n=1 / m$	Angular inertia: $\mathrm{I}=m r^{2}$	Angular facilia: $\mathrm{J}=n q^{2}$		
Momentum \| Levamentum	Momentum: $\mathbf{p}=m \mathbf{v}$	Levamentum: $\mathbf{q}=n \mathbf{w}$	Angular momentum: $\mathbf{L}=\mathbf{I} \boldsymbol{\omega}$	Angular levamentum: $\boldsymbol{\Gamma}=\mathbf{J \kappa}$		
Kinetic Energy and Lethargy	Kinetic energy: $\mathrm{E}_{\mathrm{K}}=1 / 2 m v^{2}$	Kinetic lethargy: $\mathrm{L}_{\mathrm{K}}=1 / 2 n w^{2}$	Angular energy $\mathrm{E}_{\mathrm{A}}=1 / 2 I \omega^{2}$	Angular lethargy $\mathrm{L}_{\mathrm{A}}=1 / 2 \mathrm{~J} \kappa^{2}$		
Newton's Second Law	Force: $\mathbf{F}=m \mathbf{a}=\mathrm{d} \mathbf{p} / \mathrm{d} t$	Release: $\mathbf{R}=n \mathbf{b}=\mathrm{d} \mathbf{q} / \mathrm{d} s$	Torque: $\boldsymbol{\tau}=\mathrm{I} \boldsymbol{\alpha}=\mathbf{s} \times \mathbf{F}$	Strophence: $\boldsymbol{\sigma}=\boldsymbol{J} \boldsymbol{\beta}=\mathbf{t} \times \mathbf{R}$		
Work \| Repose	Linear work: $W=\mathbf{F} \cdot \mathbf{x}$	Linear repose: $Y=\mathbf{R} \cdot \mathbf{z}$	Angular work: $W=\boldsymbol{\tau} \cdot \boldsymbol{\theta}$	Angular repose: $Y=\boldsymbol{\sigma} \cdot \boldsymbol{\varphi}$		
Power \| Placidity	Linear power: $P=\mathbf{F} \cdot \mathbf{v}$	Linear placidity: $Z=\mathbf{R} \cdot \mathbf{w}$	Angular power: $P=\boldsymbol{\tau} \cdot \boldsymbol{\omega}$	Angular placidity: $Z=\boldsymbol{\sigma} \cdot \boldsymbol{\kappa}$		

