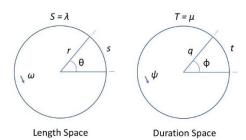
Angular velocity and angular lenticity (wavenumber)

- Velocity, $v = s/\Delta t$, lenticity, $u = t/\Delta s$ so u = 1/v and v = 1/u except if u or v are zero
 - o Zero velocity: no motion but time increases because time is independent
 - o Zero lenticity: no motion but distance increases because distance is independent
 - o Circular motion in length space and duration space:



circumference $S = 2\pi r = \text{wavelength } \lambda$; period $T = 2\pi q = 1/f = \text{wave duration } \mu$; arc length, s; arc duration, t; radius r; period radius q; time rate of rotation ω ; distance rate of rotation ψ ; angular wavenumber or repetency k; phase|wave velocity, $v_p = \lambda/T = \lambda f = \omega/k$; phase|wave lenticity, $u_p = T/\lambda = k/\omega$

Circular motion in length space with time (3+1)

- o length space angle θ , arc length s, radius r
- o length space angle $\theta \equiv s/r$

Time rates of rotation

- Independent variable is time, t; dependent variable is arc length, s
- Angular velocity: time rate of rotation, $\omega \equiv \theta/t$
- Wave (phase) velocity: wavelength per unit time, $v = s/t = S/T = r/q = \omega r$
 - o frequency, $f = 1/T = v/S = v/\lambda = v/s$
 - o wavelength, $\lambda = v/f = S$
 - o angular wavenumber or repetency, $k = 2\pi/\lambda$
- Wave velocity normalized
 - o revolutions: If S = 1, then v = 1/T = f
 - o length radians: If r = 1, then $s = \theta$ and $v = \theta/t = \phi/t = s/t = \omega = 2\pi/T = 2\pi f$
 - $\omega = 2\pi f = 2\pi/T = \theta/t$

Circular motion in duration space with distance (1+3)

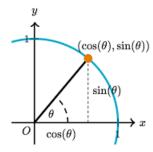
- o duration space angle ϕ , arc duration t, period radius q
- o duration space angle $\phi \equiv t/q$

Distance rates of rotation

- Independent variable is distance, s; dependent variable is (dis)time, t
- Wavenumber (angular lenticity): distance rate of rotation: $\psi \equiv \phi/s$
- Wave (phase) lenticity: wave duration per unit distance, $u = t/s = T/S = q/r = \psi q$ periodicity, $h \equiv 1/S = u/T = u/\mu = s/v$
 - \circ wave duration, $\mu = u/h = T$
 - o wave duration number, $\ell = 2\pi/\mu$
- · Wave lenticity normalized
 - o revolutions: If T = 1, then u = 1/S = h
 - o duration radians: If q = 1, then $t = \phi = \theta$ and $u = \phi/s = \theta/s = t/s = \psi = 2\pi/S = 2\pi h$
 - $\psi = 2\pi h = 2\pi/S = \theta/s = \phi/s$

Coordinates

length space (r, θ) duration space (q, ϕ)



Wave function for longitudinal wave: cosine wave

length amplitude, A; duration amplitude, B; length phase, $\theta = \psi x$; duration phase, $\phi = \omega t$; distance, s; (dis)time, t; circumference S = wavelength λ ; period T = wave duration μ ; wave (phase) velocity, v; wave (phase) lenticity, u

length space with scalar time (3+1):

$$x = A \cos(\omega t + \theta)$$
 $a = -\omega^2 x$ in SHM

$$y(x = 0, t) = A \cos(\omega t) = A \cos(2\pi f t)$$

 $y(x, t) = A \cos[\omega(t - x/v)] = A \cos[2\pi f(x/v - t)] = \text{sinusoidal wave moving in the } +x \text{ length direction}$ $y(x, t) = A \cos[2\pi (x/\lambda - t/T)] = A \cos(kx - \omega t)$

$$\partial^2 y(x, t)/\partial x^2 = (1/v^2) \partial^2 y(x, t)/\partial t^2$$

length space wave equation

duration space with distance (1+3):

$$z = B\cos(\psi s + \phi)$$
 $b = -\psi^2 z$ in SHM

$$\eta(z=0, s) = B\cos(\psi s) = B\cos(2\pi h s)$$

 $\eta(z, s) = B \cos[\psi(s - z/u)] = B \cos[2\pi h (z/u - s)] = \text{sinusoidal wave moving in the } +z \text{ duration direction } \eta(z, s) = B \cos[2\pi (z/\mu - s/S)] = B \cos[\ell z - \psi s]$

$$\partial^2 \eta(z, s)/\partial z^2 = (1/u^2) \partial^2 \eta(z, s)/\partial s^2$$
 duration space wave equation

Wave function for transverse wave: sine wave

. . .

Parametric equations

$$|\mathbf{r}| = r = \sqrt{(r_1^2 + r_2^2)}$$
 $|\mathbf{q}| = q = \sqrt{(q_1^2 + q_2^2)}$

$$\mathbf{r}(\theta) = r\cos(\theta)\,\mathbf{i} + r\sin(\theta)\,\mathbf{j}$$

$$\mathbf{r}(t) = r\cos(\omega t)\mathbf{i} + r\sin(\omega t)\mathbf{j}; \ v(t) = \omega r; \ \mathbf{a}(t) = -\omega^2\mathbf{x}(t)$$

$$\mathbf{r}(x) = r\cos(x/r)\,\mathbf{i} + r\sin(x/r)\,\mathbf{j}$$

$$\mathbf{q}(\phi) = a\cos(\phi)\mathbf{i} + a\sin(\phi)\mathbf{j}$$

$$\mathbf{q}(s) = q \cos(ks) \mathbf{i} + q \sin(\psi s) \mathbf{j}; \ u(s) = \psi q; \ \mathbf{b}(s) = -\psi^2 \mathbf{t}(s)$$

$$\mathbf{q}(z) = q \cos(z/q) \mathbf{i} + q \sin(z/q) \mathbf{j}$$