Ballistics

Launch from a height and angle with coasting ascent and descent (no drag, no thrust)

Space-time	Time-space
Initial space angle $=\theta$	Initial time angle $=\varphi$
Initial height distance $=\mathrm{y}_{0}$	Initial height distime $=\mathrm{b}_{0}$
Elapsed time interval $=\mathrm{t}$	Elapsed stance interval $=\mathrm{s}$
Distance downrange or horizontal location $=\mathrm{x}$	Distime downrange or horizontal chronation $=\mathrm{a}$
Altitude distance or vertical location $=\mathrm{y}$	Altitude distime or vertical chronation $=\mathrm{b}$
Gravitational acceleration $=\mathrm{g}$	Levitational retardation $=\mathrm{h}$
Initial velocity $=\mathrm{v}_{0}$	Initial lenticity = w_{0}
Initial horizontal velocity $=\mathrm{v}_{0 \mathrm{x}}=\mathrm{v}_{0} \cos \theta$	Initial horizontal lenticity $=\mathrm{W}_{0_{\mathrm{a}}}=\mathrm{w}_{0} \cos \varphi$
Initial vertical velocity $=\mathrm{v}_{0 \mathrm{y}}=\mathrm{v}_{0} \sin \theta$	Initial vertical lenticity $=\mathrm{w}_{0 \mathrm{~b}}=\mathrm{w}_{0} \sin \varphi$
Horizontal velocity $=\mathrm{v}_{\mathrm{x}}=\mathrm{V}_{0 \mathrm{x}}$	Horizontal lenticity $\mathrm{w}_{\mathrm{a}}=\mathrm{w}_{0 \mathrm{a}}$
Vertical velocity $=\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{0 \mathrm{y}}-\mathrm{gt}$	Vertical lenticity $=\mathrm{w}_{\mathrm{b}}=\mathrm{w}_{0 \mathrm{~b}}-\mathrm{hs}$
Velocity at apex point: $\mathrm{v}_{\mathrm{y}}=0$	Lenticity at apex instant: $\mathrm{w}_{\mathrm{b}}=0$
Horizontal location $\mathrm{x}=\mathrm{V}_{0 \mathrm{x}} \mathrm{t}$	Horizontal chronation $\mathrm{a}=\mathrm{w}_{0 \mathrm{a}} \mathrm{S}$
Vertical location $\mathrm{y}=\mathrm{v}_{0 \mathrm{y}} \mathrm{t}-1 / 2 \mathrm{gt}^{2}$	Vertical chronation b $=\mathrm{w}_{0 \mathrm{~b}} \mathrm{~s}-1 / 2 \mathrm{hs}^{2}$
Vertical location at impact point: $\mathrm{y}=0$	Vertical chronation at impact instant: $\mathrm{b}=0$
Time of flight to apex $\mathrm{tapex}=\mathrm{v}_{0 \mathrm{y}} / \mathrm{g}$	Stance of flight to apex $\mathrm{Sapex}=\mathrm{w}_{0 \mathrm{~b}} / \mathrm{h}$
Total time of flight $\mathrm{t}_{\text {total }}=2 \mathrm{t}_{\text {apex }}=2 \mathrm{v}_{0 \mathrm{y}} / \mathrm{g}$	Total stance of flight $\mathrm{s}_{\text {total }}=2 \mathrm{~s}_{\text {apex }}=2 \mathrm{w}_{06} / \mathrm{h}$
Distance range to apex $\mathrm{X}_{\text {apex }}=\mathrm{v}_{\text {ox }} \mathrm{V}_{\text {oy }} / \mathrm{g}$	Distime range to apex $\mathrm{a}_{\text {apex }}=\mathrm{w}_{\text {oa }} \mathrm{w}_{\text {ob }} / \mathrm{h}$
Total distance range $\mathrm{x}_{\text {total }}=2 \mathrm{v}_{\text {ox }} \mathrm{V}_{\text {oy }} / \mathrm{g}$	Total duration range $\mathrm{a}_{\text {total }}=2 \mathrm{w}_{\mathrm{oa}} \mathrm{W}_{\text {ob }} / \mathrm{h}$
Max altitude distance $\mathrm{y}_{\text {apex }}=1 / 2 \mathrm{v}_{0 \mathrm{y}}{ }^{2} / \mathrm{g}$	Max altitude duration $\mathrm{b}_{\text {apex }}=1 / 2 \mathrm{~W}_{0 \mathrm{~b}} / \mathrm{h}$
Trajectory formula: $\mathrm{y}=\mathrm{y}_{0}+\mathrm{x} \tan \theta-1 / 2 \mathrm{gx}^{2} / \mathrm{V}_{0 \mathrm{x}}{ }^{2}$	Trajectory formula: $\mathrm{b}=\mathrm{b}_{0}+\mathrm{atan} \varphi-1 / 2 \mathrm{ha}^{2} / \mathrm{Woa}^{2}{ }^{2}$

Note trigonometry identity for range: $2 \sin \theta \cos \theta=\sin 2 \theta$.

