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INTRODUCTION 

Uniform Motion 

Let us begin with some historical background. Galileo gave 
two definitions of uniform motion. One definition was: 

Equal or uniform motion I understand to be that of 
which the parts run through by the moveable in any 
equal times whatever are equal to one another. [1, p. 
148] 

In other words, for uniform motion given two equal time 
intervals, the distances traversed in those time intervals 
will be equal. Galileo also defined uniform motion another 
way: 

If a moveable equably carried [latum] with the same 
speed passes through two spaces, the times of motion 
will be to one another as the spaces passed through. 
[1, p. 149] 

That is, for uniform motion given two distances (“spaces”), 
the times of motion for those distances will be 
proportional. These definitions are based on the Eudoxan 
proportion: 

𝑥𝑚: 𝑥𝑛 ∷ 𝑡𝑚: 𝑡𝑛. (1) 

with corresponding distance intervals, xm and xn, and time 
intervals, tm and tn. Uniform motion can also be expressed 
as a proportion of rates: 

𝑥𝑚: 𝑡𝑚 ∷ 𝑥𝑛: 𝑡𝑛. (2) 

But such proportions are ambiguous: which one is 
measured with respect to the other: time or distance? In 
other words, which variable is independent, and which is 
dependent? 

Galileo’s dual definitions result from interchanging the 
independent and dependent variables. As will be shown 
these lead to different measurement domains depending 
on which variable is independent. 

Uniformly Accelerated Motion 

Next consider how uniformly accelerated motion was 
described by Galileo: 

If a moveable descends from rest in uniformly 
accelerated motion, the spaces run through in any 

 
1 See Chap. 9 of [2], Chap. 3 of [3], and Chap. 3 of [4]. 
2 Duration could be called time but here time is restricted to its 

meaning as a scalar parameter. 

times whatever are to each other as the duplicate ratio 
of their times; that is are as the squares of those times. 
[1, p. 166] 

This is illustrated by Galileo’s explanation of a body in free 
fall [1, p. 221]. Figure 1 reproduces his diagram in which a 
body moves uniformly from right to left on the horizontal 
line ABCDE. At B it begins to descend and follows the curve 
BIFH, which Galileo shows is a semi-parabola. In his 
explanation he states: 

 

Figure 1. Galileo's semi-parabola 

Accordingly, we see that while the body moves 
from B to C with uniform speed, it also falls 
perpendicularly through the distance CI, and at the 
end of the time-interval BC finds itself at the point I. [1, 
p. 221] 

Notice the shift of language: the body moves from B to C 
[i.e., a distance], then the time-interval BC. Galileo uses a 
distance to measure a time interval. That is, the body is 
observed as either an increasing distance or increasing 
time. The horizontal uniform motion is independent of the 
vertical free fall and acts as a reference motion of either 
distance or time. 

At first Galileo considered free fall with respect to the 
distance of descent but after a false attempt, he related 
free fall to the time and velocity of descent [2] [3] [4]. 
Descartes and others defended the first approach but were 
unable to state it correctly.1 Below we relate free fall to the 
elapsed distance. 

This paper proceeds as follows: In the first part the duality 
of length and duration2 is shown, which leads to a dual 
Newtonian mechanics. In the second part the Galilean 
transformations3 are completed, and the invariance of the 

3 Also known as Galilei transformations. 
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completed equations of Maxwell and the completed wave 
equation are shown. In the third part the light clock and 
Michelson-Morley experiment are re-examined. 

Others have considered a duality between “space and 
time”, e.g., [5], or the possibility of three dimensions of 
time or six dimensional spacetime in the context of 
relativity theory, at least since the 1970s, e.g., [6] [7] [8] 
[9]. But they all differ from the approach developed here, 
which is based on Newtonian mechanics and Maxwellian 
electrodynamics. 

 

DUALITY DEFINED 

Frame of Reference System 

Consider these two facts about the measurement of a body 
in motion: (1) there are two measures of the extent of 
motion: length and duration; (2) the space of motion is 
three-dimensional. In the following, these two measures in 
three dimensions determine two three-dimensional vector 
spaces, one with a length metric and the other with a 
duration metric. 

Consider an idealized apparatus with two rigid rods, 
connected but moveable, with one rod moving adjacent to 
the other in uniform motion at a fixed rate called the elapse 
rate. Call this device a clock-rod because it functions as a 
linear rod and a linear clock. 

Call one rod the length rod and the adjacent rod the 
duration rod. Each rod moves relative to the other at the 
elapse rate but in the opposite direction. Figure 2 depicts 
the duration rod moving relative to the length rod: 

 
Figure 2. Clock-rod 

Let many identical copies of the first clock-rod be made. 
Let the rods be arranged into a cubic lattice so that in 
principle they can measure any length or duration in any 
direction.4 

Let the line between each pair of length and duration rods 
represent a coordinate line. Three mutually orthogonal 
clock-rods represent axes of a rectilinear coordinate 
system for length and duration. The length rods in three 
dimensions comprise the length frame, and the duration 
rods in three dimensions comprise the duration frame. 

A system of clock-rods in three dimensions is a frame of 
reference system. The coordinate lines between each length 
rod and duration rod are a rectilinear coordinate system 
for measuring lengths and durations in three dimensions 
of motion. 

The three dimensional real vector space ℝ3 of length is 
called length space. The three dimensional real vector 
space ℝ3 of duration is called duration space. Length space 
and duration space have the same coordinate lines since 

 
4 Other rod shapes and arrangements can be used, e.g., straight and 

annular rods in a spherical lattice. 

their length rods and duration rods are adjacent. 
Directions in length space and duration space are collinear 
and opposite. 

A vector of length space is the displacement, and its 
magnitude is the traversal distance. A vector of duration 
space is called here the dischronment5, and its magnitude is 
called the traversal time. 

In Figure 3 a body moves from A to A′ relative to the length 
rod, and the length of motion is the difference between A 
and A′ on the length rod scale. During this motion a mark 
on the duration rod moves from B to B′ relative to the 
length rod. The time of motion is the difference between B 
(adjacent to A) and B′ on the duration rod scale. 

 

Figure 3. Length and time measurement 

In Figure 4 a body moves from A to A′ relative to the 
duration rod, and the duration of motion is the difference 
between A and A′ on the duration rod scale. During this 
motion a mark on the length rod moves from B to B′ 
relative to the duration rod. The distance of motion is the 
difference between B (adjacent to A) and B′ on the length 
rod scale. 

 

Figure 4. Duration and distance measurement 

In this way the measures of length and duration are 
defined in terms of a reference uniform motion. 

Motion 

An event is represented by a point on a frame of reference 
system. The position of an event in length space is its 
location on the length rods. In duration space the position 
of an event on the duration rods is called here its 
chronation. 

The motion of a body is comprised of a continuous series 
of events ordered with an independent variable, which is a 
dynamic parameter that underlies a chain of causality. 

Events in length space are ordered by the duration of an 
independent constant-rate motion, which is called elapsed 
time. Examples are a clock-rod or an analogue clock. 
Length space with elapsed time is called the time domain.  

Events in duration space are ordered by the length of an 
independent constant-rate motion, which is called elapsed 

5 I.e., dis (away) + chron (time) + ment. 
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distance. Examples are a clock-rod, or the arc length swept 
out by the hand of an analogue clock. Duration space with 
elapsed distance is called the distance domain. 

Events for which both time and distance are independent 
variables are in the time-distance domain, which is 
comprised of the time domain and the distance domain. 

An observer at rest relative to the length frame is in the 
time domain. An observer at rest relative to the duration 
frame is in the distance domain. An observer at rest 
relative to the duration frame is in motion relative to an 
observer at rest relative to the length frame, and vice versa. 

Since elapsed time order and elapsed distance order are 
physically independent, there is no conversion between 
the time domain and the distance domain. The time 
domain and distance domain form a complete domain for 
motion. 

By construction length and duration are symmetric. 
Bijective maps from length space to duration space and 
elapsed time to elapsed distance and vice versa, establish a 
complete duality between the time domain and the 
distance domain. 

Rates of Motion 

A rate of change is a ratio with an independent variable in 
the denominator. For rates of motion the independent 
variable is either elapsed time in the time domain or 
elapsed distance in the distance domain. The rates below 
assume continuous observations, but if observations are 
discontinuous, use the corresponding differences. 

In the following, t is elapsed time, s is elapsed distance, x is 
the displacement, and z is the dischronment. 

In Table 1 velocity v is defined as the time rate of 
displacement, which is a length space vector. The distance 
rate of dischronment w, called here lenticity6, is a duration 
space vector. 

Table 1. Rates of motion 

Time Domain Distance Domain 

Velocity Lenticity 

𝐯 ∶=
𝑑𝐱

𝑑𝑡
 𝐰 ∶=

𝑑𝐳

𝑑𝑠
 

Since velocity is in the time domain, velocity is a function 
of the independent variable time. Lenticity is in the 
distance domain and is a function of the independent 
variable distance. Faster motions are indicated by larger 
velocities and smaller lenticities. 

Instantaneous speed is the magnitude of velocity, which 
over time is the time rate of arc length traversed such as 
the speed of a journey leg. The magnitude of lenticity, 

 
6 I.e., slowness. 
7 This meaning of pace is from racing and traffic flow theory. 
8 If the function is invertible and differentiable with non-zero 

derivative, the inverse function theorem applies, and the reciprocal of 

the derivative equals the derivative of the inverse function. 

which over distance is the distance rate of arc duration 
traversed, is called pace7. 

Motion measured with respect to distance but presented 
as a speed is a distance rate speed, which is an inverse 
pace (Table 2). Motion measured with respect to time but 
presented as a pace is a time rate pace, which is an inverse 
speed.8 The speed of light measured by reflection is an 
example of distance rate speed. 

Table 2. Inverse rates of motion 

Distance Domain Time Domain 

Inverse Pace, 
Distance Rate Speed 

Inverse Speed, 
Time Rate Pace 

𝑢 = 𝑤−1 = (
𝑑𝑧

𝑑𝑠
)

−1

 𝑣−1 = (
𝑑𝑥

𝑑𝑡
)

−1

 

These inverses must be inverted in order to be added (or 
subtracted), then inverted again. This is called harmonic 
addition9 [10] [11], which is defined as: 

𝑢1 ⊞ 𝑢2 ∶= (𝑢1
−1 + 𝑢2

−1)−1 (3) 

with zero replacing any division by zero. Speeds measured 
over a distance are distance rate speeds and are averaged 
by their harmonic mean.10 

 

Table 3. Rates of rates of motion 

Time Domain Distance Domain 

Acceleration Relentation 

𝐚 ∶=
𝑑𝐯

𝑑𝑡
=

𝑑2𝐱

𝑑𝑡2
 𝐛 ∶=

𝑑𝐰

𝑑𝑠
=

𝑑2𝐳

𝑑𝑠2
 

The time rate of velocity is the acceleration a, and the 
distance rate of lenticity is the vector b, here called the 
relentation11 (Table 3). Because of the duality of length and 
duration, acceleration and relentation are also dual to one 
another. 

Other dual quantities can be defined by inverting and 
interchanging length and duration. Equations of motion in 
the time domain have dual equations in the distance 
domain and vice versa, as in the following. 

 

DUALITY ELABORATED 

Dual Newtonian Mechanics 

Scalar properties of bodies measured on a ratio scale12 
such as mass are dual with their inverse ratio. In Table 4 
mass m is dual to the inverse mass, which is shortened here 
to vass n. The mass-weighted velocity in the time domain is 

9 Not to be confused with addition of sinusoidal functions. This 

operation is also known as parallel addition or reciprocal addition. 

10 Cf. the space mean speed of traffic flow theory. 
11 Spanish, slowing. 
12 Including negative ratios, e.g., charge. 
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the momentum (p), and the vass-weighted lenticity in the 
distance domain is called here the levamentum13 (q). 

Table 4. Weighted rates of motion 

Time Domain Distance Domain 

Momentum Levamentum 

𝐩 ∶= 𝑚
𝑑𝐯

𝑑𝑡
 𝐪 ∶= 𝑛

𝑑𝐰

𝑑𝑠
 

The interaction of bodies (or a body and its environment) 
in the time domain is called force (F). In the distance 
domain an interaction of bodies is called here release14 (R). 

Newton’s axioms or laws of motion in the time domain are 
given with their duals in the distance domain below [12] 
[13]: 

First Time Domain Law: A body remains at rest or in 
uniform motion unless acted on by a force. 

First Distance Domain Law: A body remains at rest or 
in uniform motion unless acted on by a release. 

Newton’s first law is a statement of the time domain law of 
inertia, which corresponds to the distance domain law of 
facilia15. A body in the time domain resists change, 
whereas in the distance domain a body remains in the 
same state unless there is an ‘easier’ motion. They amount 
to the same law, a law of inertia-facilia, which is the 
condition for an inertial-facilial frame of reference system. 

There is no change of velocity or lenticity in an inertial-
facilial frame of reference system. An inertial-facilial frame 
of reference system moving at a constant velocity or 
constant lenticity relative to an inertial-facial frame of 
reference system is also inertial-facilial. All of the frame of 
reference systems considered here are inertial-facilial. 

Second Time Domain Law: A body impacted by a force 
moves in such manner that the time rate of change of 
momentum equals the force. 

Second Distance Domain Law: A body impacted by a 
release moves in such manner that the distance rate of 
change of levamentum equals the release. 

The second laws concern the cause of changes of motion, 
which are force in the time domain and release in the 
distance domain (Table 5). 

Table 5. Cause of changes of motion 

Time Domain Distance Domain 

Force Release 

𝐅 ∶=
𝑑𝐩

𝑑𝑡
 𝐑 ∶=

𝑑𝐪

𝑑𝑠
 

Third Time Domain Law: If two bodies exert forces on 
each other, these forces are equal in magnitude and 
opposite in direction. 

 
13 Latin, alleviation. 
14 Cf. releasing a restraint. 

Third Distance Domain Law: If two bodies enable 
releases on each other, these releases are equal in 
magnitude and opposite in direction. 

The third laws undergird the conservation of momentum 
and levamentum, about which see below. 

Gravitation and Levitation Duality 

Newton’s law of gravitation in the time domain postulated 
a gravitational force F21 exerted on mass m2 by mass m1 as 

𝐅21 = −𝐺
𝑚1𝑚2

𝑟12
2 𝐫̂12 

where the negative sign indicates an attractive force 
toward m2, the constant of proportionality is G, and 𝐫̂12 is a 
unit vector directed from mass m1 to mass m2. [14] 

The gravitational acceleration g for a body with mass m is 
then 

𝑔 = −𝐺
𝑚

𝑟2
. 

The dual to gravitational force in the distance domain is 
called here levitational release R21 enabled on vass n2 by 
vass n1 as 

𝐑21 = −𝐿
𝑛1𝑛2

𝜌12
2 𝛒̂12 

where the negative indicates an attractive release toward 
n2, the constant of proportionality is L, and 𝛒̂12 is a unit 
vector directed from n1 to n2. 

The levitational relentation ℓ for a body with vass n is then 

ℓ = −𝐿
𝑛

𝜌2
. 

In other words, gravitational force and levitational release 
are dual explanations of the same phenomenon. 

Dual Semi-Parabola 

The dual to Galileo’s semi-parabola can now be stated. 
Figure 1 diagrams the semi-parabola in the time domain: 

𝑥 = 𝑥0 − 𝑔𝑡2 

with traversal height x, initial location (height) x0, 
acceleration of gravity g, and elapsed time t. 

Let the experiment take place in duration space, with an 
independent distance. This distance is an elapsed distance 
rather than a traversal distance, and the corresponding 
time is not the elapsed time but the traversal time of a 
uniform vertical motion measuring the time of descent. 

The semi-parabola in the distance domain is 

𝑧 = 𝑧0 − ℓ𝑠2 

with traversal duration z, initial chronation z0, relentation 
of levity ℓ, and elapsed distance s. 

Symmetry and Conservation 

The length frame transformations form a group known as 
the Galilei group G. [15] Because of duality the duration 
frame transformations form an isometric group. 

15 Latin, easy. 



5 

 

The symmetries are: (a) translation symmetry of elapsed 
time and elapsed distance, and (b) translation symmetry 
and isotropy of length space and duration space. 

Length space rotation is symmetric (isotropic) for three-
dimensional length, and duration space rotation is 
symmetric (isotropic) for three-dimensional duration. As 
three-dimensional length translation symmetry implies 
conservation of linear momentum, so three-dimensional 
duration translation implies conservation of linear 
levamentum. 

As three-dimensional length rotation symmetry implies 
conservation of angular momentum, so three-dimensional 
duration translation symmetry implies conservation of 
angular levamentum. As elapsed time translations imply 
energy conservation, so elapsed distance translations 
imply the conservation of lethargy, the inverse of energy. 

Clearly, this can be continued so that there is a dual for all 
of Newtonian mechanics. 

Dual Galilean Transformations 

The dual Galilean transformations are between two 
inertial-facilial frame systems in the time-distance domain. 
The time-distance domain is the time domain and the 
distance domain together. It consists of two three-
dimensional vector spaces and two independent variables, 
time and distance. 

Let the length-space axis x1′ be moving at velocity v 
relative to length-space axis x1 (Figure 5). Consider two 
observers at rest relative to coordinate systems K and K′ 
with K′ moving with velocity v along the x1-x1′ axis relative 
to K. 

 

Figure 5. Two observers in the time domain 

Let event P be observed at x = (x1, 0, 0) with time t in K and 
x′ = (x1′, 0, 0) with time t′ in K′. The Galilean 
transformation in the time domain in this configuration is 

𝐱′ = 𝐱 − 𝐯𝑡
𝑡′ = 𝑡

(4) 

The universality of elapsed time is a consequence of its 
independence in the time domain16. The independence of a 
time series in the time domain is the source of the 
impression that elapsed time “flows” of its own accord. 
[12, p. 408] 

Let the duration-space axis z1′ be moving at lenticity w 
relative to duration-space axis z1 (Figure 6). Consider two 
observers at rest relative to coordinate systems S and S′ 

 
16 There is no need for Newton’s first Scholium on absolute time and 

space (p. 408ff [12]). 

with S′ moving with lenticity w along the z1-z1′ axis relative 
to S. 

 
Figure 6. Two observers in the distance domain 

Let event P be observed at z = (z1, 0, 0) with distance s in S 
and z′ = (z1′, 0, 0) with distance s′ in S′. The Galilean 
transformation in the distance domain in this 
configuration is 

𝐳′ = 𝐳 − 𝐰𝑠
𝑠′ = 𝑠

(5) 

The universality of elapsed distance is a consequence of its 
independence in the distance domain. 

A length vector function x(t) uses only the time domain 
transformation, Equation (4). A duration vector function 
z(s) uses only the distance domain transformation, 
Equation (5). A vector function of both length and duration 
vectors such as ψ(x(t), z(s)) includes both transformations. 

Complete Wave Equation 

Consider a wave function 𝜓(x, z) in the time-distance 
domain with displacement x, dischronment z, and constant 
c. The displacement and dischronment are relatively 
independent. 

The complete wave equation in the time-distance domain 
is defined with vector functions of displacement x and 
dischronment z as: 

(𝛁𝐱 −
1

𝑐2
𝛁𝐳

2) 𝜓(𝐱, 𝐳) = 0 (6) 

with constant of proportionality c−2. The complete 
electromagnetic field is derived below as an example of a 
complete wave equation in the time-distance domain. 

Complete Electric and Magnetic Fields 

The complete electric and magnetic fields are functions of 
both length and duration in three dimensions: E = E(x, z) 
and B = B(x, z), cf. [16, pp. 18-1 to 18-4]. Faraday’s law and 
Ampère-Maxwell’s law are completed as follows [17]: 

𝛁𝐱  ×  𝐄 =   − (
∂B1

∂z1

,
∂B2

∂z2

,
∂B3

∂z3

)   = −𝛁𝐳𝐁 (7) 

and 

𝑐2𝛁𝐱 × 𝐁 =
𝐣

𝜖0

+ (
∂𝐸1

∂𝑧1

,
∂𝐸2

∂𝑧2

,
∂𝐸3

∂𝑧3

) =
𝐣

𝜖0

+ 𝛁𝐳𝐄. (8) 

Without a current, Equation (8) becomes [16, pp. 20-7 to 
20-14]: 

𝑐2𝛁𝐱 × 𝐁 = 𝛁𝐳𝐄. (9) 
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Equations (7) and (9) show a duality between the electric 
and magnetic fields. 

Electromagnetic wave 

The electromagnetic wave is derived as follows: first take 
the length curl of Faraday’s complete law shown in 
equation (7): 

𝛁𝐱 × (𝛁𝐱 × 𝐄) = −𝛁𝐳(𝛁𝐱 × 𝐁). (10) 

Now the curl of the curl of any vector can be written as the 
sum of two terms, one with the divergence and the other 
the Laplacian: 

𝛁𝐱 × (𝛁𝐱 × 𝐄) = 𝛁𝐱(𝛁𝐱 ⋅ 𝐄) − 𝛁𝐱
2𝐄. 

Since in a vacuum the divergence of E is zero, only the 
Laplacian term remains. From Equation (9) the duration 
derivative of c2∇x × B is the second partial derivative of E 
with respect to z: 

𝑐2𝛁𝐳(𝛁𝐱 × 𝐁) = 𝛁𝐳
2𝐄. 

Equation (10) then becomes: 

𝛁𝐱
2 =

1

𝑐2
𝛁𝐳

2𝐄,  (11) 

which is the complete wave equation. Written out it reads: 

𝜕2𝐄

𝜕𝑥1
2 +

𝜕2𝐄

𝜕𝑥2
2 +

𝜕2𝐄

𝜕𝑥3
2 −

1

𝑐2

𝜕2𝐄

𝜕𝑧1
2 +

1

𝑐2

𝜕2𝐄

𝜕𝑧2
2 +

1

𝑐2

𝜕2𝐄

𝜕𝑧3
2 = 0. 

Thus the complete Maxwell equations show that 
electromagnetism is a wave. 

Invariance of the Wave Equation 

The wave function 𝜓(x, z) in the time-distance domain is 
defined above in Equation (6) with displacement x, and 
dischronment z, and constant c. Apply the dual Galilean 
transformations to show that the wave equation is 
invariant. 

The left hand side of Equation (6) is dependent on length 
with elapsed time, and the right hand side is dependent on 
duration with elapsed distance, so both length and 
duration transformations are needed. Each part of the two-
way wave equation is Galilean invariant. [18, pp. 104-105] 

Consider a standard configuration (Figure 2) in which 
motion is parallel to the x1-z1 plane. The Galilean 
transformations are given by Equations (4) and (5). The x2, 
x3, z2, and z3 coordinates are directly seen to be invariant. 
What remains is the one-dimensional wave equation: 

𝜕2𝜓

𝜕𝑥1
2 =

1

𝑐2

𝜕2𝜓

𝜕𝑧1
2 . 

Because 

𝜕𝑥1
′

𝜕𝑥1

= 1 and 
𝜕𝑧1

′

𝜕𝑥1

= 0, 

the length derivative of the time domain transformation is: 

𝜕𝜓

𝜕𝑥1

=
𝜕𝜓

𝜕𝑥1
′

𝜕𝑥1
′

𝜕𝑥1

+
𝜕𝜓

𝜕𝑧1
′

𝜕𝑧1
′

𝜕𝑥1

=
𝜕𝜓

𝜕𝑥1
′  

so that 

 
17 Cf. the Round-Trip Light Principle [25] 

𝜕2𝜓

𝜕𝑥1
2 =

𝜕2𝜓

𝜕𝑥′
1
2 

Similarly because 

𝜕𝑥1
′

𝜕𝑧1

= 0 and 
𝜕𝑧1

′

𝜕𝑧1

= 1, 

the duration derivative of the distance domain 
transformation is: 

𝜕𝜓

𝜕𝑧1

=
𝜕𝜓

𝜕𝑥1
′

𝜕𝑥1
′

𝜕𝑧1

+
𝜕𝜓

𝜕𝑧1
′

𝜕𝑧1
′

𝜕𝑧1

=
𝜕𝜓

𝜕𝑧1
′  

so that 

𝜕2𝜓

𝜕𝑧1
2 =

𝜕2𝜓

𝜕𝑧′
1
2 

Thus the two-way wave equation in the moving frame is: 

𝜕2𝜓

𝜕𝐱′2 =
1

𝑐2

𝜕2𝜓

𝜕𝐳′2
(12) 

The result is that the wave equation is form invariant 
under the dual Galilean transformations in event space. 

 

CONSEQUENCES OF DUALITY 

Light Clock Re-examined 

A light clock is a thought experiment in which a light beam 
in a vacuum reflects back and forth between two parallel 
mirrors, a distance L apart (see Figure 4 below). When the 
light beam returns to the first mirror, one period of time 
passes. [19, pp. 15-9 to 15-11] [20] [21] [22] 

Since light moves between mirrors whose length apart is 
set by the experimenter, the independent variable is 
elapsed distance, and the dependent variable is duration. 
The rate of motion measured is the mean round-trip pace 
of light, which is inverted as the harmonic mean round-trip 
speed c in a vacuum. Although the one-way speed of light 
is not measured, it can nominally be set to c in the context 
of a round-trip.17 

Consider three cases of a light clock in Figure 7. 

 
Figure 7. Light clock cases 

The length between the mirrors is independently set at L, 
and so is the same for all observers. 

Case 1 shows a light clock at rest relative to the observer, 
with a light beam reflecting longitudinally back and forth 
between two mirrors. In this frame the round trip distance 
between the two mirrors is 2L, and the period of one 
round trip is 

𝑇 =
2𝐿

𝑐
. (13) 
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Case 2 shows an observer moving with lenticity w|| 
longitudinally to the light clock. Apply the Galilean 
distance domain transformation: t′ = t – w||x, where x is the 
longitudinal axis. 

Nominally, the duration of the first leg is 

𝑇1 = (𝐿/𝑐 − 𝐿𝑤∥),  

and the duration of the second leg is 

𝑇2 = (𝐿/𝑐 + 𝐿𝑤∥). 

The period T of one round trip is: 

𝑇 = (𝐿/𝑐 − 𝐿𝑤∥) + (𝐿/𝑐 + 𝐿𝑤∥) =
2𝐿

𝑐
. (14) 

Case 3 shows an observer moving with lenticity w⟂ 
transversely to the light clock. In this case there are two 
components of duration: longitudinal and transverse, 
which are independent of one another since they are in 
different dimensions. Transverse motion has no effect on 
longitudinal motion, so the longitudinal motion is the same 
as the stationary case above: the total distance is 2L, the 
period T of one round trip is again 2L/c. 

Michelson-Morley Experiment Re-examined 

The Michelson-Morley experiment, [23] compared the 
longitudinal and transverse cases of reflected light, 
expecting to detect an ether wind (Figure 8). 

 

Figure 8. Michelson-Morley apparatus 

They explain: “Let sa … be a ray of light which is partly 
reflected in ab, and partly transmitted in ac, being 
returned by the mirrors b and c, along ba and ca. [Then] ba 
is partly transmitted along ad, and ca is partly reflected 
along ad. If then the paths ab and ac are equal [distances 
D], the two rays interfere along ad.” 

By rotating the apparatus they expected to detect an ether 
wind parallel to ba or ca. They calculated the round-trip 
duration (in the notation here) as 

𝑇 =
𝐿

𝑐 − 𝑣
+

𝐿

𝑐 + 𝑣
. (15) 

But since the independent variable is the distance 
traversed, duration is a dependent variable, and the 
experiment is in the distance domain. Speeds are distance 
rate speeds, which add by harmonic addition. So the 
denominators should be: 

𝑐 ⊟ 𝑣 = (𝑐−1 − 𝑣−1)−1 

and 

𝑐 ⊞ 𝑣 = (𝑐−1 + 𝑣−1)−1. 

The period of a round trip is then: 

𝑇 =
𝐿

𝑐 ⊟ 𝑣
+

𝐿

𝑐 ⊞ 𝑣
=

2𝐿

𝑐
. (16) 

As with a light clock, the round-trip periods would be 
equal whether or not there was an ether wind, so their null 
result should have been expected. 

The Lorentz Adjustment 

Time dilation and length contraction of the Lorentz 
transformation [19, pp. 15-2 to 15-5] can be seen as an 
adjustment to the mistaken Michelson-Morley calculation. 
Expand the mistaken Equation (15) to get 

𝑇 =
2𝐿

𝑐
𝛾2 (17) 

where 

𝛾2 = (1 − 𝑣2/𝑐2)−1. 

Define variables T′ and L′ such that 

𝑇′ = 𝛾𝑇 and 𝐿′ =
𝐿

𝛾
 

so that time is longer (i.e., slower) and length is shorter. 
Then Equation (17) becomes 

𝑇′ =
2𝐿′

𝑐
,  

which conforms to Equation (16). The Lorentz 
transformation compensates for the mistake in Equation 
(15) but doesn’t fix it, whereas the correction in Equation 
(16) avoids the need for an adjustment. 

 

CONCLUSION 

Two themes have guided this paper: the significance of the 
distinction between independent and dependent variables 
and the duality of length and duration for bodies in 
motion. 

An historical introduction found a duality of length and 
duration in Galileo’s Two New Sciences. Led by this, the 
frame of reference was expanded into a frame of reference 
system in which length and duration are duals. 

Then Newtonian mechanics, Maxwellian electrodynamics, 
and the Galilean transformations are completed with their 
duals. The Galilean invariance of the completed 
Maxwellian electrodynamics and the completed wave 
equation are shown. A re-examination of the light clock 
and the Michelson-Morley experiment confirms the 
Galilean invariance of the round-trip speed of light. 

This removes two justifications for the Lorentz 
transformations [24] and raises the question whether it is 
needed. Additional research is required to determine to 
what extent the completed Galilean transformations are 
sufficient for physics. 
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