3D Time:
 From Transportation to Physics Part 6: Orbits

Ralph Gillmann
isoul.org

Orbits and rotations

- In space and time
- Circumference S and radius R
- Period T and period radius Q
- Circle
- $2 \pi=S / R$
- angle $\theta=s / R$
- Cycle
- $\mathrm{Q}=\mathrm{T} / 2 \pi$
- $2 \pi=T / Q$
- period angle $\phi=t / \mathrm{Q}$

Circumference, S

Period, T

Orbits in space

- Linear speed, $v=\mathrm{d} s / \mathrm{d} t=\mathrm{S} / \mathrm{T}$
- Frequency, $f=1 / T$
- If $\mathrm{S}=1$, then $v=f$
- Angular velocity, $\omega=\mathrm{d} \theta / \mathrm{d} t$
- If $\mathrm{R}=1$, then $v=\omega$
- Units: m/s, rpm, cps, Hz
- Independent variable is time
- dependent variable is angle in space

Circumference, S

Period, T

Orbits in time

- Linear pace, $u=\mathrm{d} t / \mathrm{d} s=\mathrm{T} / \mathrm{S}$
- Circuncy, $h=1 / \mathrm{S}$
- if $\mathrm{T}=1$, then $u=h$
- Angular legerity, $\psi=\mathrm{d} \phi / \mathrm{d} s$
- if $\mathrm{Q}=1$, then $u=\psi$
- Units: s/m, circuits/km
- Independent variable is length
- dependent variable is angle in time

Circumference, S

Period, T

Circuncy

- Number of circuits per unit distance
- Alice has a 2 km commute
- Each day her circuncy is 0.5 circuit/km
- Each week her circuncy is 0.1 circuit/km
- Bart has a 10 km commute
- Each day his circuncy is 0.1 circuit/km
- So Alice's weekly circuncy equals Bart's daily circuncy

Acceleration \& expedience

- Tangential velocity
- $v=\mathrm{d} s / \mathrm{d} t=\mathrm{S} / \mathrm{T}$
- Tangential legerity
- $u=d t / d s=T / S$
- Centripetal acceleration
- $a=\Delta v / T=2 \pi v / T=v^{2} / R$
- Centrifugal expedience
- $b=\Delta u / S=2 \pi u / S=u^{2} / Q$

Circumference, S

Period, T

Circular orbits in space

- Assume three propositions:

1. Each planet orbits the Sun in a circular path with radius R (and circumference S).
2. The Sun is at the center of mass of each planet's orbit.

3. The speed of each planet is constant.

Orbits in space

- Centripetal acceleration: $a=v^{2} / \mathrm{R}$
- eliminate v
- $a \propto \mathrm{R} / \mathrm{T}^{2}$
- From Kepler's $3^{\text {rd }}$ law:
- the semi-major axis, $(A)=R$,
- is related as: $T^{2} \propto R^{3}$

- Combine: $a \propto 1 / \mathrm{R}^{2}$
- Inverse square law in space

Orbits in space

- From Newton's $2^{\text {nd }}$ law:
- $\mathrm{F}=\mathrm{m} a \propto \mathrm{~m} / \mathrm{R}^{2}$
- From Newton's $3^{\text {rd }}$ law:
- $\mathrm{F}=\mathrm{M} a \propto \mathrm{M} / \mathrm{R}^{2}$
- Combine:

- $F \propto m M / R^{2}$
- $\mathrm{F}=\mathrm{GmM} / \mathrm{R}^{2}$
- Newton's force of gravitation

Switch reference frames

Circular orbits in time

- Exchange space and time variables
- Assume three opposite propositions:

1. The Sun orbits each planet in a circular 3D time path with period T (and period radius Q).

2. Each planet is at the center of vass of their orbit.
3. The pace of the Sun is constant.

Orbits in time

- Centripetal expedience: $b=u^{2} / \mathrm{Q}$
- $b \propto Q / S^{2}$ or $b \propto T / S^{2}$
- From Kepler's $3^{\text {rd }}$ law for 3D time:
- the period semi-major axis, (C) = Q,
- is related as: $\mathrm{S}^{2} \propto \mathrm{Q}^{3}$
- or $\mathrm{S}^{2} \propto \mathrm{~T}^{3}$

- Combine: $b \propto 1 / T^{2}$
- Inverse square law in 3D time

Orbits in time

- From Newton's $2^{\text {nd }}$ law for 3D time:
- $\mathrm{H}=\mathrm{n} b \propto \mathrm{n} / \mathrm{T}^{2}$
- From Newton's $3^{\text {rd }}$ law for 3D time:
- $\mathrm{H}=\mathrm{N} b \propto \mathrm{~N} / \mathrm{T}^{2}$
- Combine:
- $\mathrm{H} \propto \mathrm{nN} / \mathrm{T}^{2}$

- $\mathrm{H}=\mathrm{LnN} / \mathrm{T}^{2}$
- Rush of levitation
- direction is toward the smaller body

In conclusion

- Exchange space \& time
- Orbits and rotations
- Circular orbits
- Inverse square law
- Law of gravitation
- Law of levitation
- Next is Part 7: Relativity

