3D Time:
 From Transportation to Physics Part 4: Kinematics II

Ralph Gillmann
isoul.org

What is displacement?

- Difference between two places in space
- 3D vector difference, r
- Example:
- a car travels east 50 km ,
- then travels north 25 km ;
- displacement is dashed arrow.

50

- Length of the direct motion

What is distimement?

- Difference between two places in time
-3D vector difference, w
- Example:
- a car travels east for 30 min
- then travels north for 30 min ;
- distimement is dashed arrow.

N

30

- Time of the direct motion

What is velocity?

- Speed with space direction
- Δ displacement / Δ time, $\Delta \mathrm{r} / \Delta t$
- Velocity is a 3D vector
- magnitude and direction
- e.g., speed 80 kph north
- represented by boldface \mathbf{v}

- instantaneous velocity, $\mathbf{v}=\mathrm{dr} / \mathrm{d} t$
- What is pace with direction?

What is legerity?

- Legerity - "lightness in movement"
- Pace with time direction
- Δ distimement / Δ length, $\Delta \mathbf{w} / \Delta s$
- Legerity is a 3D vector
- magnitude and direction
- e.g., $12 \mathrm{~min} / \mathrm{km}$ north

- represented by boldface u
- instantaneous legerity, $\mathbf{u}=\mathrm{dw} / \mathrm{ds}$
- Boldface w means 3D time

Example

- Car travels east 50 km for 30 min
- velocity is $(50 / 30) \mathrm{km} / \mathrm{min} * 60 \mathrm{~min} / \mathrm{hr}=100 \mathrm{kph}$ east
- legerity is $(30 / 50) \mathrm{min} / \mathrm{km} * 60 \mathrm{sec} / \mathrm{min}=36 \mathrm{sec} / \mathrm{km}$ east
- Then it travels north 25 km for 30 min
- velocity is $(25 / 30) \mathrm{km} / \mathrm{min}$ * $60 \mathrm{~min} / \mathrm{hr}=50 \mathrm{kph}$ north
- legerity is $(30 / 25) \mathrm{min} / \mathrm{km} * 60 \mathrm{sec} / \mathrm{min}=72 \mathrm{sec} / \mathrm{km}$ north

Comparison

3D Space

- Units in km

50

3D Time

- Units in min

What is acceleration?

- Greater (or less) distance per time
- Change in velocity per unit time
- average acceleration, $\mathbf{a}=\Delta \mathbf{v} / \Delta t$
- instantaneous acceleration, $\mathbf{a}=\mathrm{dv} / \mathrm{d} t$
- Acceleration is a 3D vector
- Units: $(\mathrm{m} / \mathrm{s}) / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$

What is expedience?

- Expedite - to make something happen in less time
- Change in legerity per unit length
- average expedience, $\mathbf{b}=\Delta \mathbf{u} / \Delta s$
- instantaneous expedience, $\mathbf{b}=\mathrm{d} \mathbf{v} / \mathrm{d} s$
- Expedience is a 3D vector
- faster is negative
- direction opposite to motion

- Units: $(\mathrm{s} / \mathrm{m}) / \mathrm{m}=\mathrm{s} / \mathrm{m}^{2}$

Equations of motion

3D Space

1. $v=s_{0}+a t$
2. $s=s_{0}+v_{0} t+1 / 2 a t^{2}$
3. $2 \mathrm{a}=\left(v^{2}-v_{0}{ }^{2}\right) /\left(s-s_{0}\right)$

3D Time

1. $u=u_{0}+b s$
2. $t=t_{0}+u_{0} s+1 / 2 b s^{2}$
3. $2 \mathrm{~b}=\left(u^{2}-u_{0}^{2}\right) /\left(t-t_{0}\right)$

Similar but not equal

Kinematics II conclusion

- Defined velocity and legerity
- Defined displacement and distimement
- Defined acceleration and expedience
- Different way to look at motion
-3D time does kinematics!

