3D Time:
 From Transportation to Physics Part 3: Kinematics I

Ralph Gillmann
isoul.org

What is kinematics?

- The study of motion: what is it?
- Describing, not explaining
- No forces - that's dynamics
- Speed, velocity, acceleration
- Corresponding terms in 3D time

What is motion?

- Begin with motion - a primitive concept
- Define space and time in terms of motion
- Compare motion to a reference motion

- Space: asynchronous comparison to a reference motion
- comparing with a ruler
- Time: synchronous comparison to a reference motion
- comparing with a clock

Space and time

- Space is observed asynchronously
- as with a picture, sculpture
- Time is experienced synchronously
- as with music, dance
- Space direction: relative to a place
- dancers converging at a place on the stage
- Time direction: relative to an event

- dancers converging at a point in time

What is speed?

- Change of distance per unit time
- average speed, $v=\Delta s / \Delta t$
- instantaneous speed, $v=\mathrm{d} s / \mathrm{d} t$
- a magnitude, $v \geq 0$
- Units
- m/s, kph, mph
- Independent variable is time
 - dependent variable is distance
- Switch distance and time?

What is pace?

- Change of time per unit distance
- average pace, $u=\Delta t / \Delta s$
- instantaneous pace, $u=\mathrm{d} t / \mathrm{d} s$
- a magnitude, $u \geq 0$
-Walking, running, cycling
- e.g., min per km, min per mile
- Independent variable is distance

- e.g., track length is fixed
- dependent variable is time
- Lower numbers mean faster

Speed and pace

- Inverses
- pace $=1 /$ speed, $u=1 / v$
- so u and v cannot be zero
- speed \& pace equivalent
- Zero speed
- no motion but time changes

- Zero pace
- no motion but distance changes
- because distance is independent

Pre-trip planning

- E.g., have an appointment
- destination is fixed
- independent variable is length
- Want to get there on time
-What route takes the least time?
-What time to depart?
- Time questions: pace, 3D time

Circular and cyclic motion

- Clock angle from 12 to 3
- angle in space or time? both
- Circle
- θ, s, R
- angle in space, $\theta=s / R$
- Cycle
- ϕ, t, Q
- angle in time, $\phi=t / \mathrm{Q}$

Angular speed

- Angular distance per unit time, v
- frequency, f
- time rate of rotation, ω
- Angular speed, $v=\mathrm{S} / \mathrm{T}=\mathrm{R} / \mathrm{Q}$
- If $S=1$, then $1 / T=f$
- If $R=1$, then $1 / Q=\omega$
- Units: m/s, rpm, cps, Hz
- Independent variable is time
- dependent variable is angle in space

Period, T

Angular pace

- Period angle per unit length, u
- periodicity, h
- space rate of rotation, ψ
- Angular pace, $u=T / S=Q / R$
- If $\mathrm{T}=1$, then $1 / \mathrm{S}=h$
- If $\mathrm{Q}=1$, then $1 / \mathrm{R}=\psi$
- Units: s / m, cycles/m
- Independent variable is length
- dependent variable is angle in time

Period, T

Kinematics 1 conclusion

- Began with motion
- Defined space and time
- reference motion
- asynchronous and synchronous
- Defined speed and pace
- angle in space and time
- angular speed and pace
- Continued with Part 4: Kinematics II

